“几乎全军覆没,个别学霸除外!”有人说超纲了,有人说没超纲!这是一道小学数学竞赛

贝笑爱数学 2024-07-11 17:08:12

“几乎全军覆没,个别学霸除外!”有人说超纲了,有人说没超纲!这是一道小学数学竞赛题:三角形三边全都未知,求其面积! 如图,长方形ABCD的面积为32,三角形ADF与CDE的面积均为12,求阴影三角形DEF的面积。 有人说超纲了,非求解一元二次方程不可!过点E和F分别作AD和CD的垂线EG和FH,相交于点O。S△BEF记为a,则S△EOF=S△BEF=a,S△FOG=S△EOH=4-a,S△GOH=8+a。S△GOH/S△FOG=GO/OE=S△EOH/S△EOF也即(4-a)×(4-a)=a×(8+a)。 有人说不超纲,连接CF和AE即可!S△BCF=S△ABE=16-12=4,从而BC=4BE,AB=4BF,故S长方形ABCD=32S△BEF也即S△BEF=1。 友友们,怎么看?有啥想法或思路,欢迎留言分享! #小学数学#

0 阅读:1010

评论列表

体育老师

体育老师

32
2024-07-11 20:05

连接DB,ADB面积16。ADF面积12得出BF/AB为1/4,同理BE/BC也为1/4,三角形BEF面积为1,阴影面积为32-12-12-1=7

海风椰影

海风椰影

28
2024-07-11 18:09

7

clay

clay

22
2024-07-12 15:40

连接BD即可,BD平分DEF+BEF,等高情况下,计算出BE:CE=1:3,BF:AF=1:3,设a为矩形底边b为矩形高,即BEF面积为1/2*(1/4)a*(1/4)b=(1/32)ab=1,DEF面积为32—12—12—1=7

杨百万在线

杨百万在线

8
2024-07-11 20:00

一眼看不出

嗄呗

嗄呗

6
2024-07-11 19:53

连接DE,学完比例应该就会做这个题了, BF/CD=1/4,BE/CE=1/3,(等高的情况下,底边的比等于面积的比)。

浅梦易醒 回复 09-20 17:39
对的,比较或者分母都可以。得出长方形长8宽4就简单了。

用户16xxx72

用户16xxx72

5
2024-08-30 06:21

连接BD,由等高三角形求得BE是BC的1/4和BF是AB的1/4,S三角形BEF=ABⅹBCⅹ1/4ⅹ1/4÷2=32ⅹ1/32=1,阴影面积=32-12ⅹ2-1=7

墨耘

墨耘

4
2024-09-28 21:29

比较好做,连接对角线,能看出同高底边比等于面积比,右下小三角形两条直角边为长方形两边的1/4,从而求出小三角形面积为1。阴影为7

不知不知

不知不知

1
2024-07-11 21:47

7。因为三角形EFB=1

无欲则刚

无欲则刚

1
2024-07-14 17:50

7

贝笑爱数学

贝笑爱数学

感谢大家的关注